why is it that we only consider curves and not higher dimensional varieties in the context of Langlands Program?
comment on why is it that we only consider curves and not higher dimensional varieties. The point is that while function fields of curves are very similar to number fields, the fields of functions on higher dimensional varieties have a very different structure. For example, if X is a smooth surface, then the completions of the field of rational ...
Langlands-Fontaine-Mazur conjecture
Let $ X $ be a scheme of finite type over $ \mathbb{Z} $. We denote by $ X_{\mathbb{Q}} $ the generic fiber of $ X\to \text{Spec}(\mathbb{Z}) $. The fiber $ X_{p} $ of $ X\to \text{Spec}(\mathbb{Z}) $ at a prime $ p $ is a scheme over $ \mathbb{F}_{p} $. We denote by $ N_{X}(p) $ the number of its $ \mathbb{F}_{p} $-points. If $ q=p^{e} $ is pow...
Primes and Knots
Mazur’s knotty dictionary
What is the knot associated to a prime?
Who dreamed up the primes=knots analogy?
the birthday of the primes=knots analogy
de Jong conjecture
A conjecture of A.J. de jong
Let \(X\) be an integral scheme, separated and of finite type over a finite field \(k\) of characteristic \(p\). Let \(\ell\) be a prime number different from \(p\). Assume that \(X\) is a normal scheme. Let \(\bar{\rho}:\pi_{1}(X)\to GL_{n}(\mathbb{F}_{\ell})\) be a continuous, absolutely irreducible representation ...
Databases & Online References & Tools
Databases
Catalogue of Mathematical Datasets
Fanography
A Database for Number Fields
The Automorphic Project
The Stacks Project
Kerodon—an online resource for homotopy-coherent mathematics
MAGMA computer
The L-functions and Modular Forms Database (LMFDB)
Gro...
Unramified Fontaine-Mazur Conjecture
Let $ p $ be a rational prime. Let $ \overline{\mathbb{Q}_{p}} $ be an algebraic closure of $ \mathbb{Q}_{p} $. The Unramfieid Fontaine-Mazur Conjecture states that
Unramified Fontaine-Mazur Conjecture
Let $ K $ be a number field and $ S $ a finite set of primes of $ K $ not containing any primes above $ p $. Let $ G_{K,S} $ be the Galois gro...
$R \simeq T$?
有个很重要的事实 就是 Hecke 代数可以写成一些eigensystem的积,那么局部化了之后就是eigensystem over \bar \rho 很自然地,根据泛性质就存在了一个映射R—>T;然后 容易严重它的满的 所以本质上TW方法就是证明它也是单的;patching 干了什么呢?它提供了一个东西,T在上面有个自然的作用。我们让R通过满射R—>T也作用在上面。Patching argument告诉我们R的作用是自由的 从而得到R——>T也是单的;关键就是那个东西怎么构造呢?其实用到了Hida thy的想法。先提升level, 再去不动点或者余不动点回归level。具体是写成一堆东西的极限。这个Toby Gee在AWS 2013他的最后两讲很形象地画了不少图 .
局部类域论的证明概览
与整体类域论(GCFT)相似,也存在许多局部类域论(LCFT)的证明。上同调证明在上世纪50年代出现后逐渐固化为教科书里的标准证明,这一过程一直持续到21世纪初。在此期间,几乎每本介绍局部类域论的书给出的证明都不完全一致,所以笔者的总结是基于基本思路和方法的。尽管笔者尽了最大努力,限于眼界和知识有限,以下总结可能仍然不完整,欢迎补充和评论。以下列表主要依据主要文献的出版(或公开)时间排序。
历史上,LCFT 首先是从 GCFT 推出的,可以参考 Hasse 30年代初的论文(德语),链接稍后补充。
Central Simple Algebras 历史上第一个独立的证明是基于 central simple algebras 和 Brauer group of a local ...
共计 10 篇文章,2 页。